NuMI BEAMLINE DESIGN

JOHN A. JOHNSTONE BEAM PHYSICS

TRAJECTORY:

- 3 major bend centers steer protons extracted from the MI-60 straight 374 m through the existing tunnel to the NuMI target.
 - -3 Lambertsons & 1 C-magnet at Q608 extract protons vertically. Powering the 2 downstream Lambertsons & C-magnet 20% above their nominal 120 GeV/c fields creates sufficient vertical clearance to insert a rolled 3Q120 quad between the C-magnet & Q109.
 - 6 rolled EPB's level the beam off and steer it onto its final horizontal trajectory.
 - 6 vertically-bending B2's pitch the beam down through the carrier pipe.
 - 4 final B2's align the beam vertically onto the target & towards the Soudan detector.

DIPOLES					
String	Type	#	Length (m)	B (T)	Roll
HV1	EPB	1 2 2 1	3.048	1.4986	1.61° 33.00° 36.51° 33.00°
V2	B2	6	6.0706	1.7148	900
V3	B2	4	6.0706	1.6103	900

Table 1. Magnet parameters of the 3 major bend centers.

[Design fields : EPB = 1.5 T @ 1.688 kA : B2 = 1.8 T @ 4.750 kA]

BEAMLINE OPTICS:

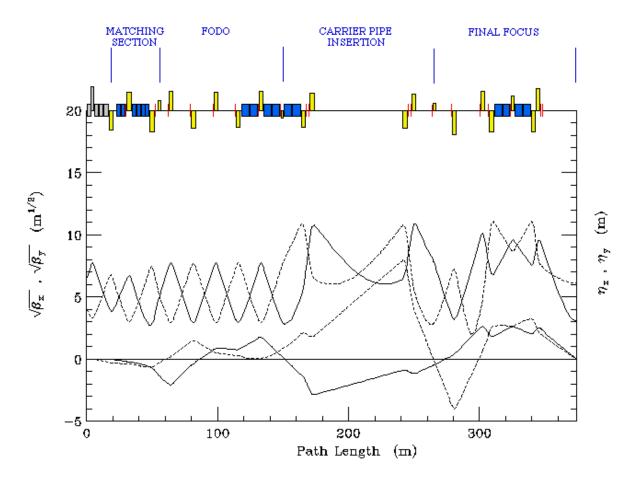


Figure 1. Lattice functions of the NuMI line [vertical = dashed; horizontal = solid].

- 21 quadrupoles of the 3Q60/120 series define the optics. Each quad has a BPM and, with the exceptions of Q101 & Q104, also a dipole corrector.
- The beamline is comprised of 4 major optical modules:
 - 4 quads match β 's & α 's from the MI into the transport line;
 - a section of repetitive FODO cells which essentially replicate the MI lattice functions;
 - a straight section insert similar to those of the Tevatron for crossing the forbidden carrier pipe. Peak $\beta_X = \beta_Y = 120$ m;
 - a final focusing module to create the desired beam size at the target and fix dispersion $\eta_X = \eta_Y = 0$. [The single horizontal bend center, plus the vertical tunnel constraints preclude also achieving $\eta_X' = \eta_{Y}' = 0$]. $\beta_X(\text{max}) \approx 100$ m, and $\beta_Y(\text{max}) \approx 120$ m.

QUADRUPOLES					
Quad #	Length (m)	Gradient (T/m)			
Q101 Q102	3.048 3.048	13.2876 12.3403			
Q103	3.048	14.6796			
Q104 Q105 / 106 / 107 / 108 / 109	1.524 3.048	6.9234 12.3445			
Q110 / 115	1.524	5.0768			
Q111 / 114	3.048	11.5134			
Q112 / 113	3.048	12.1383			
Q116	3.048	16.2339			
Q117	3.048	12.9807			
Q118	3.048	14.5280			
Q119	1.524	9.9047			
Q120	3.048	14.8634			
Q121	3.048	14.8351			

Table 2. Quadrupole circuits and parameters. [Design fields = 18.9 T/m @ 100 A]

- Q101 \rightarrow Q104 are powered individually for MI \rightarrow NuMI matching.
- Q105 \rightarrow Q109 in the FODO section run in series.
- Corresponding pairs Q110/Q115, Q111/Q114, & Q112/Q113, upstream & downstream of the straight section are powered together.
- Q116 \rightarrow Q121 are powered individually to match from NuMI to the desired spot size & beam parameters on the target.
- All gradients are comfortably below the magnet design values.

FINAL FOCUS OPTICS:

- The optics shown in Fig.1 has $\beta_X = 9.40$ m, $\beta_Y = 37.60$ m, $\alpha_X = \alpha_Y = 0$ at the target, which, for a 40 π (95%, normalized) beam gives a spot size of $\sigma_X = 0.70$ mm, and $\sigma_V = 1.40$ mm.
- The final focus must be sufficiently flexible to maintain the desired spot size over a wide range of emittances, reflecting current MI operations & possible future evolution. Tuning curves for the last 4 magnets are shown in Fig.2. β_{max} never exceeds ~135 m (~6% increase in beam size).

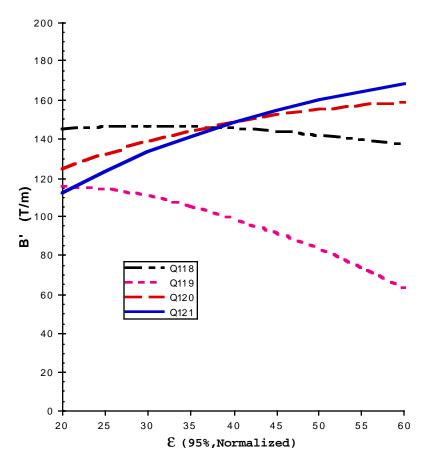


Figure 2. The Q118 \rightarrow Q121 gradients that produce $\sigma_X = 0.70$ mm, $\sigma_Y = 1.40$ mm, and $\alpha_X = \alpha_Y = 0$, at the target as beam emittance varies.

• All 6 FF quadrupoles are needed to also maintain $\eta_X = \eta_y = 0$ at the target, but this refinement is probably not necessary. For $\delta p_{95}/p = 7.E-4$, and emittances in the range $20 \rightarrow 60\pi$, dispersive contributions to spot size never exceed 2 μ m in σ_X and 25 μ m in σ_Y .

ODE TO B2'S

- Using B2 magnets to comprise the last bend center has huge optical advantages. The ability to design a final focus section with a large tuning range is a direct consequence of this.
- Use of 4 B2's, rather than a 9 magnet mix of 5-1.5-120 & 6-3-120 dipoles liberates >18' of tunnel space, which is significant. Some consequences are:
 - the lever arm between the final 2 sets of targeting BPM's is increased by ~2 m;
 - a doublet can be used as the last 2 FF magnets to establish low- β optics ($\alpha_X = \alpha_y = 0$) at the target. It is then possible to keep β_{max} ~120 m. A doublet is not possible with a 9 dipole mix & β_{max} in one plane will always reach ~300 m the aperture gain of a 6-3-120 is then squandered by the larger beam size.
- within the pre-target tunnel there is enough room for 4 quad+BPM+corrector packages, compared with just 3 for the dipole mix.
- With B2 magnets then design of the FF section is driven by the desired optical properties, rather than the available space.

GRADIENT ERRORS:

- Sensitivity of the optics to random gradient errors has been simulated. With errors of $\sigma(\Delta B'/B') = 25E-4$ assigned to the 21 quadrupoles for 10 random seeds, $\Delta \beta/\beta$ never exceeds $\approx 6\%$, or, an $\approx 3\%$ increase in beam size.
- The change in beam σ 's are < 60 μ m, and at the target the maximum changes in beam size are on the order of 20–30 μ m.

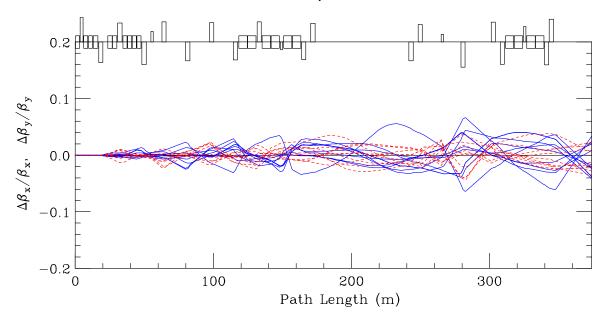


Figure 3. β -waves due to random gradient errors with $\sigma(\Delta B'/B') = 25E-4$.

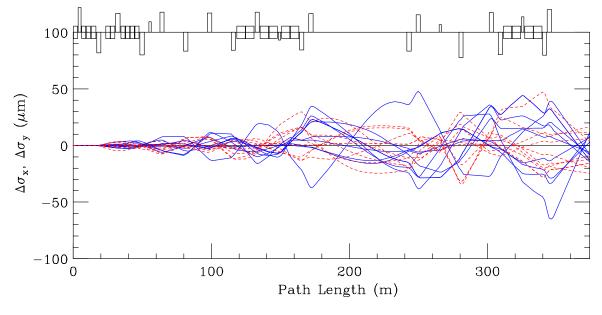


Figure 4. Beam size variation resulting from random gradient errors.

INJECTION OPTICS ERRORS:

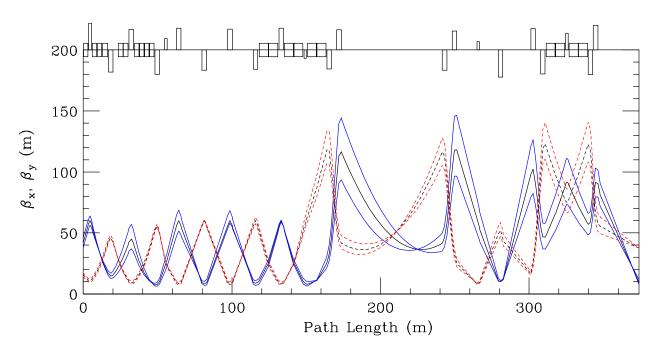


Figure 5. β -waves due to $\pm 10\%$ MI injection β errors.

- Shown are the β -envelopes resulting from $\pm 10\%$ variations in the nominal MI β_X & β_Y injection values.
- The MI-end matching section can be retuned to eliminate the mis-match, but this isn't strictly necessary the maximum β 's are sufficiently well-behaved that there isn't an aperture problem. The residual mis-match at the target can be corrected by the final focus quadrupoles.

TRAJECTORY CORRECTION:

• Central trajectory errors are simulated with random magnet mis-alignments & dipole field errors:

$$\sigma(\Delta x, \Delta y) = 0.25 \text{ mm}, \ \sigma(\psi_{\text{roll}}) = 0.50 \text{ mr}, \& \ \sigma(\Delta B/B) = 25\text{E-4}.$$

• Uncorrected offsets from 10 random generator seeds:

$$\Delta x(rms) = 1.24 \text{ mm} \qquad \Delta y(rms) = 1.47 \text{ mm}$$

$$\Delta x(max) = 6.94 \text{ mm} \qquad \Delta y(max) = 6.27 \text{ mm}$$

Figure 6. Uncorrected & corrected trajectories resulting from random magnet misalignments and dipole field errors

• After correction, $\Delta x = \Delta y = 0$ & $\Delta x' = \Delta y' = 0$ at the target, and beamline offsets are reduced to:

$$\Delta x(rms) = 0.07 \text{ mm}$$
 $\Delta y(rms) = 0.25 \text{ mm}$ $\Delta x(max) = 0.33 \text{ mm}$ $\Delta y(max) = 2.02 \text{ mm}$

• At 120 GeV/c MI correctors are capable of 150 μr horizontally & 75 μr vertically. The strengths required for the simulated orbit corrections are:

$$\theta_{\rm X}({\rm rms}) = 16.14~\mu{\rm r}$$
 $\theta_{\rm Y}({\rm rms}) = 21.10~\mu{\rm r}$ $\theta_{\rm X}({\rm max}) = 52.90~\mu{\rm r}$ $\theta_{\rm V}({\rm max}) = 68.47~\mu{\rm r}$

SUMMARY

- The NuMI beamline is a modular design, with 2 matching sections, periodic FODO cells, & a special straight section insert across the carrier pipe.
- The lattice is constructed from 21 quadrupoles a reasonable number for a beamline of this length.
- β < 60 m throughout the MI-end & FODO sections, and β < 120 m everywhere else.
- Lattice functions are not overly sensitive to error sources arising either from optical mis-matchs or gradient errors and are correctable through the matching sections.
- 21 BPM's & 19 MI-style dipole correctors provide for excellent orbit control.

